
8 Optimal Detection for Additive Noise Channels: 1-

D Case

We now derive the optimal demodulator. From the previous section, we
have seen that instead of analyzing the waveform channel, we can convert
it to an equivalent vector channel. The size of the vector is the same as the
size K of the orthonormal basis for the waveforms s1(t), s2(t), . . . , sM(t). In
this section, we will assume K = 1. This is the case, for example, when we
use PAM.

Definition 8.1. Detection Problem: When K = 1, our problem un-
der consideration is simply that of detecting the scalar message S in the
presence of additive noise N . The received signal R is given by

R = S +N.

• S is selected from an alphabet S containing M possible values s(1), s(2),
. . ., s(M).

• pS
(
s(j)
)

= P
[
S = s(j)

]
≡ pj.

• S and N are independent.

A detector’s job is to guess the value of the channel input S from the value
of the received channel output R. We denote this guessed value by Ŝ. An
optimal detector is the one that minimizes the (symbol) error probability

P (E) = P
[
Ŝ = S

]
.

8.2. The analysis here is very similar to what we have done in Section 3.
Here, for clarity, we note some important differences:

• In Section 3, The channel input and output are denoted by X and Y ,
respectively. Here, they are denoted by S and R.

• In Section 3, the transition probabilities are arbitrary and summarized
by the matrix Q. Here, the transition probabilities is basically con-
trolled by the additive noise.

• In Section 3, both X and Y are discrete. Here, S is discrete. However,
because noise is continuous, R will be a continuous random variable.
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Even with these differences, several techniques that we used in Section 3
will be applicable here.

Example 8.3. Review: When the additive noise is discrete, we may attempt
to write down the Q matrix. Suppose

pS (s) =


0.3, s = −1,
0.7, s = 1,
0, otherwise,

and pN (n) =


0.2, n ∈ {−0.5,+0.5},
0.6, n = 0,
0, otherwise.

Because R = S +N , we know that

(a) given S = −1, we have R = −1 +N :

(b) given S = 1, we have R = 1 +N :

The Q matrix is given by

Note that each row of the Q matrix is simple a shifted copy of the noise
pmf. The amount of shift is the corresponding value of s for that row.

8.4. Formula-wise, when the additive noise is discrete, each row of the Q
matrix (as in Example 8.3) is given by

pR|S(r|s) = pN(r − s). (43)
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8.5. When the additive noise is continuous, there are uncountably many
possible values for the channel output R. Hence, representing conditional
probabilities in the form of a matrix Q does not make sense here.

When R is continuous, the conditional pmf pR|S(r|s) is replaced by the
conditional pdf fR|S(r|s). For additive noise N with pdf fN(n), we have

fR|S(r|s) = fN(r − s). (44)

Example 8.6. Suppose the discrete additive noise in Example 8.3 is re-
placed by a continuous additive noise:

8.7. The optimal detector, which minimize the error probability, is the
MAP detector:

ŝMAP (r) = arg max
s∈S

pS(s)fR|S (r |s) = arg max
s∈S

pS(s)fN (r − s) . (45)

Because event [W = j] is the same as event [S = s(j)], we also have

ŵMAP (r) = arg max
j∈{1,2,...,M}

pjfN

(
r − s(j)

)
. (46)

When the prior probabilities are ignored, we have the (sub-optimal) ML
detector:

ŝML (r) = arg max
s∈S

fR|S (r |s) = arg max
s∈S

fN (r − s) . (47)

and
ŵML (r) = arg max

j∈{1,2,...,M}
fN

(
r − s(j)

)
. (48)
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Example 8.8. Back to Example 8.6.

Definition 8.9. The ith decision “region”, denoted by Di for a decoder
ŝ(r) is defined as the collection of all the r values at which r is decoded as
s(i).

• The collection D1, D2, . . . ,DM should partition the whole observable
values (support) of R.

Example 8.10. Back to Example 8.6.

8.11. Gaussian Noise: When the noise N is Gaussian with mean 0 and
standard deviation σN ,

fN(n) =
1√

2πσN
e
− 1

2

(
n
σN

)2
.
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Definition 8.12. In general, a Gaussian (normal) random variable X
with mean m and standard deviation σ is characterized by its probability
density function (PDF):

fX(x) =
1√
2πσ

e−
1
2(

x−m
σ )

2

.

To talk about such X, we usually write X ∼ N (m,σ2). Probability involv-
ing X can be evaluated by

P [X ∈ A] =

∫
A

fX(x)dx.

In particular,

P [X ∈ [a, b]] =

∫ b

a

fX(x)dx = FX(b)− FX(a)

where FX(x) =
∫ x
−∞ fX(t)dt is called the cumulative distribution function

(CDF) of X.
We usually express probability involving Gaussian random variable via

the Q function which is defined by

Q (z) =

∞∫
z

1√
2π
e−

x2

2 dx.

Note that Q(z) is the same as P [S > z] where S ∼ N (0, 1); that is Q (z)
is the probability of the “tail” of N (0, 1).
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Figure 25: Q-function

It can be shown that
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• Q is a decreasing function

• Q (0) = 1
2

• Q (−z) = 1−Q (z)

◦ This is useful for converting the argument of the Q function to
positive value.

• For X ∼ N (m,σ2),

P [X > c] = Q

(
c−m
σ

)
.

8.13. Three important noise probabilities for N ∼ N (0, σ2
N):

P [N > c] = , P [N < c] = , P [a < N < b] =

Note that all strict inequalities above can also be replaced by the ones
that also include equalities because the noise is a continuous random variable
and hence including one particular noise value does not change probability.

8.14. For additive noise channel where R = S + N , S |= N , and N ∼
N (0, σ2

N)

ŝMAP (r) = arg max
s∈S

(
2σ2

N ln pS(s)− (r − s)2
)

= arg max
s∈S

(
σ2
N ln pS(s)− Es

2
+ s · r

)
,

and
ŝML (r) = arg min

s∈S
(r − s)2 = arg min

s∈S
d (r, s) .
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Example 8.15. In a binary antipodal signaling scheme, the message S is
randomly selected from the alphabet set S = {−3, 3} with P [S = −3] = 0.3
and P [S = 3] = 0.7. The message is corrupted by an independent additive
noise N ∼ N (0, 2). Find the MAP detector ŝMAP (r).
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8.16. The error probability of a detector can be found via its success prob-
ability

P (C) =
M∑
i=1

P
(
C|S = s(i)

)
P
[
S = s(i)

]
=

M∑
i=1

P
[
R ∈ Di

∣∣∣S = s(i)
]
pi

=
M∑
i=1

piP
[
S +N ∈ Di

∣∣∣S = s(i)
]

=
M∑
i=1

piP
[
N + s(i) ∈ Di

]
=

M∑
i=1

pi

∫
Di

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Di

pifN

(
r − s(i)

)
dr.
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This gives

P (E) = 1− P (C)

=
M∑
i=1

pi

∫
Dc
i

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Dc
i

pifN

(
r − s(i)

)
dr.

Although, at first, the above expressions may look complicated, it is similar
to what we used when we did in Section 3.

Example 8.17. Back to Example 8.15.
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P (E) = p1Q

(
τ ∗ − s(1)

σ

)
+ p2Q

(
s(2) − τ ∗

σ

)
= p1Q

(
d

2σ
+
σ

d
ln
p1

p2

)
+ p2Q

(
d

2σ
− σ

d
ln
p1

p2

)
We can see from the last expression that the error probability of the

optimal (MAP) detector depends on s(1) and s(2) only through their distance
d.

Definition 8.18. In “standard” multi-level PAM, we required that spac-
ing between all adjacent signals to be the same. Furthermore, all M signals
are equally likely. To minimize the average energy, we also require that the
constellation is “centered” around zero.

Suppose the distance between adjacent signals is d, then the M signals
are represented in the constellation by

s(j) =
d

2
(2j − 1−M) .

Example 8.19. Standard Quaternary PAM

1
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8.20. Correlation detector: Recall, from (50), that for additive noise
channel where R = S +N , S |= N , and N ∼ N (0, σ2

N),

ŝMAP (r) = arg max
s∈S

(
σ2
N ln pS(s)− Es

2
+ r · s

)
.

Equivalently,

ŵMAP (r) = arg max
j∈{1,2,...,M}

(
σ2
N ln pj −

Ej

2
+ r · s(j)

)
.

Now,

r · s(j) = 〈r (t) , sj (t)〉 =

∞∫
−∞

r (t) sj (t)dt.

8.21. Matched filter implementation of the optimal detector: In
practice, to calculate the correlation (inner-product) 〈r (t) , s (t)〉 above, we
use filtering. Recall that when a signal r(t) passes through a filter whose
impulse response is h(t), the output of the filter is given by

{r ∗ h} (t) =

∞∫
−∞

r (τ)h (t− τ) dτ

Let’s try h(t) = s∗(T − t) for some constant T . Then,

h(t− τ) = s∗ (T − (t− τ)) = s∗ (T − t+ τ) .
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Therefore,

{r ∗ h} (t) =

∞∫
−∞

r (τ)s∗ (T − t+ τ) dτ.

In particular,

{r ∗ h} (T ) =

∞∫
−∞

r (τ)s∗ (τ) dτ = 〈r (t) , s (t)〉 .

Conclusions: Implementation of optimal (MAP) detector can be done by
matched filters.
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